City of Aurora Water Production Division

This report is intended to provide you with important information about your drinking water and the efforts made by the City of Aurora Water Production Division to provide safe drinking water.

Sources of water for the Aurora Water Treatment Plant include surface water from the Fox River and a blend of water from several shallow wells and deep wells, which draw from the Cambrian-Ordovician Aquifer system.

Plant Capacity – The Aurora Water Treatment Plant is capable of fully treating 36.5 million gallons of water per day.

Treatment and Distribution System – Well water is pumped to the plant through a collector line where it is combined with Fox River water. The water is then lime-softened, fluoridated, filtered, disinfected and discharged into reservoirs with a total storage capacity of 6 million gallons. From there, the water is pumped into the distribution system by pumps located at the plant. Next, the water travels through a series of pipes ranging in size from 4 inches to 36 inches in diameter on its way to your tap. Nine storage tanks located throughout the city provide 17.5 million gallons of storage and maintain adequate pressure.

Tap Water Information

- City water has a pH of 8.9-9.2, and a chloramine disinfectant residual of 2-3 ppm.
- City water has an average hardness of 120-140 mg/liter which is equivalent to 7-8 grains per gallon.
- Fluoride content is 0.7 ppm (0.7 mg/liter) as required by the Illinois Department of Public Health.

Process flow diagram for the Aurora Water Treatment Facility.
PARTNERSHIP FOR SAFE WATER — PRESIDENTS AWARD

The City of Aurora is proud to recognize the achievement of the Aurora Water Production Division in providing some of the nation’s safest, cleanest drinking water to the city’s residents.

The Aurora Water Production Division has been honored with the Presidents Award from the Partnership for Safe Water, a national initiative to improve the quality of drinking water. The Aurora Water Treatment Facility is one of about 65 surface water treatment plants nationwide to achieve and document the exceptional water quality required to earn the Presidents Award. This places the Aurora Water Treatment Facility in the top half of the top 1 percent of surface water treatment plants in the United States.

The optimization of individual filter performance is a key water quality performance goal of the Partnership for Safe Water’s Treatment Plant Optimization program. The Presidents Award recognizes the highest possible and most stringent level of individual filter performance and is an outstanding achievement.

USEPA WATERSENSE PROGRAM:

The City of Aurora is a partner in the U.S. EPA’s WaterSense program, which is a voluntary nationally recognized program that promotes water conservation and efficiency. The program also provides reliable information on water efficient products and practices. Look for the WaterSense label on products which will be 20% more efficient and perform as well or better than conventional products. To find more information go to the WaterSense website at http://www.epa.gov/watersense.

CONTAMINANTS THAT MAY BE PRESENT IN SOURCE WATER:

Sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and in some cases, radioactive material. Water can also pick up substances resulting from the presence of animals or from human activity.

Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban storm water runoff, and residential uses.

Microbial contaminants, such as viruses, protozoa, and bacteria, which may come from wastewater treatment plants, septic systems, agricultural livestock operations, and wildlife.

Organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and may also come from gas stations, urban storm water runoff, and septic systems.

Inorganic contaminants, such as salts and metals, which may occur naturally or result from urban storm runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.

Radioactive contaminants, which may occur naturally or result from oil and gas production and mining activities.

In order to ensure tap water is safe to drink, the U.S. EPA prescribes regulations that limit the amount of certain contaminants in water provided by public water supply systems. Food and Drug Administration (FDA) regulations establish limits for contaminants in bottled water, which must provide the same protection for public health.

We want our valued customers to be informed about their water quality. If you would like to learn more, please contact the Water Production Division at 630-256-3250, visit the Water Production Division’s webpage: www.aurora-il.org/950/water-production, or attend a regularly scheduled city committee meeting.
WATER QUALITY TEST RESULTS

The following tables contain scientific terms and measures, some of which may require explanation.
Definitions:
Maximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.
Maximum Contaminant Level (MCL): The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.
Maximum Residual Disinfectant Level Goal (MRDLG): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.
Maximum Residual Disinfectant Level (MRDL): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

2019 REGULATED CONTAMINANTS DETECTED

Lead and Copper

<table>
<thead>
<tr>
<th>Contaminant</th>
<th>Date Sampled</th>
<th>MCLG</th>
<th>Action Level (AL)</th>
<th>90th Percentile</th>
<th># Sites Over AL</th>
<th>Units</th>
<th>Violation</th>
<th>Likely Source of Contamination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copper</td>
<td>2018</td>
<td>1.3</td>
<td>1.3</td>
<td>0.088</td>
<td>0</td>
<td>ppm</td>
<td>N</td>
<td>Erosion of natural deposits; Leaching from wood preservatives; Corrosion of household plumbing systems.</td>
</tr>
<tr>
<td>Lead</td>
<td>2018</td>
<td>0.015</td>
<td>0.012-0.014</td>
<td>0.014</td>
<td>4</td>
<td>ppb</td>
<td>N</td>
<td>Corrosion of household plumbing systems; Erosion of natural deposits.</td>
</tr>
</tbody>
</table>

Regulated Contaminants

<table>
<thead>
<tr>
<th>Disinfectants and Disinfection By-Products</th>
<th>Collection Date</th>
<th>Highest Level Detected</th>
<th>Range of Levels Detected</th>
<th>MCL</th>
<th>MCLG</th>
<th>Units</th>
<th>Violation</th>
<th>Likely Source of Contamination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chloramines</td>
<td>2019</td>
<td>3</td>
<td>3-3</td>
<td>MRLD = 4</td>
<td>ppm</td>
<td>N</td>
<td>Water additive used to control microbes.</td>
<td></td>
</tr>
<tr>
<td>Haloacetic Acids (HAAs)</td>
<td>2019</td>
<td>16</td>
<td>5.7-21</td>
<td>No goal for the total</td>
<td>60</td>
<td>ppb</td>
<td>By-product of drinking water disinfection.</td>
<td></td>
</tr>
<tr>
<td>Total Trihalomethanes (THMs)</td>
<td>2019</td>
<td>43</td>
<td>24-67.1</td>
<td>No goal for the total</td>
<td>80</td>
<td>ppb</td>
<td>By-product of drinking water disinfection.</td>
<td></td>
</tr>
<tr>
<td>Inorganic Contaminants</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Barium</td>
<td>2019</td>
<td>0.014</td>
<td>0.014-0.014</td>
<td>2</td>
<td>2</td>
<td>ppm</td>
<td>N Discharge of drilling wastes; Discharge from metal refineries; Erosion of natural deposits.</td>
<td></td>
</tr>
<tr>
<td>Chromium</td>
<td>2019</td>
<td>3</td>
<td>2.8-2.8</td>
<td>100</td>
<td>100</td>
<td>ppb</td>
<td>N Discharge from steel and pulp mills; Erosion of natural deposits.</td>
<td></td>
</tr>
<tr>
<td>Fluoride</td>
<td>2019</td>
<td>0.6</td>
<td>0.6-0.6</td>
<td>4</td>
<td>4</td>
<td>ppm</td>
<td>N Erosion of natural deposits; Water additive which promotes strong teeth; Discharge from fertilizer and aluminum factories.</td>
<td></td>
</tr>
<tr>
<td>Nitrate (measured as Nitrogen)</td>
<td>2019</td>
<td>1</td>
<td>0.9-0.9</td>
<td>10</td>
<td>10</td>
<td>ppm</td>
<td>N Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion of natural deposits.</td>
<td></td>
</tr>
<tr>
<td>Sodium*</td>
<td>2019</td>
<td>64</td>
<td>64-64</td>
<td>N/A</td>
<td>N/A</td>
<td>ppm</td>
<td>N Erosion from naturally occurring deposits; Used in water softener regeneration.</td>
<td></td>
</tr>
</tbody>
</table>

* There is not a state or federal MCL for sodium. Monitoring is required to provide information to consumers and health officials that are concerned about sodium intake due to dietary precautions. If you are on a sodium restricted diet, you should consult a physician about this level of sodium in the water.

Coliform Bacteria

<table>
<thead>
<tr>
<th>MCLG</th>
<th>Total Coliform MCL</th>
<th>Highest No. of Positive</th>
<th>Fecal Coliform or E. Coli MCL</th>
<th>Total No. of Positive E. Coli or Fecal Coliform Samples</th>
<th>Violation</th>
<th>Likely Source of Contamination</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>5% of monthly samples are positive</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>No</td>
<td>Naturally present in the environment</td>
</tr>
</tbody>
</table>

Turbidity

<table>
<thead>
<tr>
<th>Limit (Treatment Technique)</th>
<th>Level Detected</th>
<th>Violation</th>
<th>Likely Source of Contamination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Highest single measurement</td>
<td>1 NTU</td>
<td>N</td>
<td>Soil runoff.</td>
</tr>
<tr>
<td>Lowest monthly % meeting limit</td>
<td>0.3 NTU</td>
<td>N</td>
<td>Soil runoff.</td>
</tr>
</tbody>
</table>

Turbidity is a measurement of the cloudiness of the water caused by suspended particles. We monitor it because it is a good indicator of water quality and the effectiveness of our filtration system and disinfectants.

Total Organic Carbon: The percentage of Total Organic Carbon (TOC) removal was measured each month and the system met all TOC removal requirements set, unless a TOC violation is noted in the violations section.

Raw Water Quality Monitoring

<table>
<thead>
<tr>
<th>Contaminant</th>
<th>Sample Date</th>
<th>Average Level Detected</th>
<th>Units</th>
<th>Raw Source Water Informational Statement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cryptosporidium</td>
<td>2019</td>
<td>0.204</td>
<td>Oocysts/L</td>
<td>Cryptosporidium is a microbial parasite found in surface water throughout the U.S. Although filtration removes cryptosporidium, the most commonly used filtration methods cannot guarantee 100 percent removal. Aurora’s monitoring of the Fox River indicates the presence of these organisms. Current test methods do not permit determination of the organisms viability; the ability to cause disease. Symptoms of infection include nausea, diarrhea, and abdominal cramps. Most healthy individuals can overcome the disease within a few weeks. However, immunocompromised people are at greater risk of developing life-threatening illness. Immunocompromised individuals are encouraged to consult their doctors regarding appropriate precautions to avoid infections. Cryptosporidium must be ingested to cause disease and it may be spread through means other than drinking water.</td>
</tr>
</tbody>
</table>

The IEPA requires Aurora to monitor for certain contaminants less than once per year because the concentrations of these compounds do not change frequently. Thus, some data, though accurate, is more than one year old.
UNREGULATED CONTAMINANT MONITORING
The City of Aurora was required to sample and test for all the contaminants listed in the Unregulated Contaminant Monitoring Rules (UCMR2, UCMR3 and UCMR4) from 2009 to 2019. The results of this monitoring are not included in this report, but are available upon request by contacting the Water Production Division at (630) 256-3250. The purpose of unregulated contaminant monitoring is to assist the U.S. EPA in determining the occurrence of unregulated contaminants in drinking water and whether future regulation is warranted.

2019 ADDITIONAL VOLUNTARY UNREGULATED CONTAMINANT MONITORING
The City of Aurora also samples for many other compounds on a voluntary basis that are not regulated. Some of the general categories of data collected include inorganic compounds, volatile organic compounds, synthetic organic compounds, bacteria levels, pharmaceuticals and personal care products, algal toxins, and several others. This data is not included in this report, but is available upon request by contacting the Water Production Division at (630) 256-3250.

2019 EMERGENCY BACK-UP WELL MONITORING
The City of Aurora maintains emergency back-up wells. These wells are sampled and tested monthly. This data is not included in this report, but is available upon request by contacting the Water Production Division at (630) 256-3250.

HEALTH INFORMATION
Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of contaminants. The mere presence of contaminants in drinking water does not necessarily represent a health risk.

Some people may be more vulnerable to certain contaminants than the general population. Immunocompromised people, such as cancer patients undergoing chemotherapy, organ transplant recipients, people with HIV/AIDS or other immune system disorders, and some senior citizens and infants can be particularly at risk of infections. These people should seek advice about drinking water from their health care providers.

U.S. EPA/Center for Disease Control guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the SAFE DRINKING WATER HOTLINE (800) 426-4791.

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Aurora cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours in your home’s pipes, you can minimize the potential for lead exposure by flushing your tap for at least 30 seconds before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead.

For more detailed information on lead in drinking water, please visit the city’s webpage on lead in drinking water at http://www.aurora-il.org/960/Lead-in-Drinking-Water.

More information about contaminants and potential health effects can be obtained by calling the U.S. Environmental Protection Agency’s SAFE DRINKING WATER HOTLINE (800) 426-4791.

Lawn Watering Permitted
6 - 9 A.M. and 6 - 9 P.M.
Odd Addresses on Odd Days
Even Addresses on Even Days

Aurora Water Treatment Facility

Aurora, Illinois
City of Lights
www.aurora-il.org